

Adapt or Be Outdated: Evolving Implicit Toxicity Datasets

K/DA: Automated Data Generation Pipeline for Detoxifying Implicitly Offensive Language in Korean

Minkyeong Jeon*, Hyemin Jeong*, Yerang Kim, Jiyoung Kim, Jae Hyeon Cho, Byung-Jun Lee

Project Page

0. Motivation

The challenges of offensive language detoxification

1. Cost-ineffective **human annotation** to build paired data
2. The **rapid evolution** of offensive terms, rendering static datasets quickly outdated.
3. Insufficient paired data for under-resourced languages

1. Overview

Our contributions are:

1. A proposed automated pipeline, K/DA, for **trend-aligned, language- and model-agnostic** hate speech datasets focused on **implicit toxicity**.
2. A dataset release of 7.5K neutral-toxic sentence pairs
3. Improved performance on detoxification tasks

2. Definition of implicit Offensiveness

- 1) Insults through **disregard** or **mockery** without profanity e.g., *Are you one of those gym bros who think lifting is a personality trait?*
- 2) **Community-specific slang** that is offensive within certain groups e.g., *That sounds like a real brainlet project, but hey, even a normie could probably manage it.*
- 3) **Altered slurs** or disguised profanity to evade moderation e.g., *Dont normalize this \$h1t.*

3. Generation pipeline of Trend-Aligned Paired Dataset

Step 1: Slang Retrieval

Prompt
Rephrase "Give me something clickbait." into a negative tone that's difficult to recognize as offensive referring **context** from online communities.

From the start, the **article** didn't make sense and felt off.

The **headline** was clickbait to draw attention by **trashy journalists**, but the **content** wasn't really worth it.

It's kind of **pitiful and disgusting**. Add a "gross" tag to it. With the intense music on top, it just makes everything more bizarre

Typical of those **chauvinistic pig**: they only put out provocative, **misogynistic** content

Just put out something that could at least be eye candy.

Write some weirdo nonsense that only **perverts** would enjoy.

Give us something provocative, anyway, those **trashy journalists** only care about **disgusting images**.

Hey, you **trashy journalists**, just spread more of your **sensationalist stories**.

Step 2: Responses Filtering

Pair Consistency	Implicit O.	Accept
Context maintained	Criticism & Mockery	✓
Context shifted Irrelevant generation	Other relationship Low toxicity	✗
Context shifted Irrelevant generation	Criticism & Mockery	✗
Context maintained	Criticism & Mockery	✓
Context maintained	Criticism & Mockery	✓

Step 1 Retrieve 9 semantically similar sentences from the community using cosine similarity.

An LLM then synthesizes a toxic version by incorporating trend-aligned slang from these sentences.

Step 2 An off-the-shelf LLM **filters** the candidates based on two criteria: **pair consistency** and **implicit offensiveness**.

- **Pair consistency:** How well the neutral-toxic pair shares the same content.
- **Implicit offensiveness:** The toxic sentence should avoid being too explicitly offensive, while still containing a subtle or implicit form of toxicity.

4. Evaluation

Table 1. G-Eval results on 500 toxic-neutral pairs

Lang	Dataset	Overall O.	Implicit O. (↑)	Consistency (↑)
kor	K-OMG	3.770 _(±0.040)	2.399 _(±0.054)	1.393 _(±0.030)
	BEEP	2.300 _(±0.055)	2.206 _(±0.048)	-
	KODOLI	3.293 _(±0.058)	2.554 _(±0.047)	-
	Translated CADD	2.963 _(±0.055)	1.861 _(±0.053)	1.458 _(±0.036)
	Ours (kor)	2.719 _(±0.057)	2.622 _(±0.050)	4.060 _(±0.033)
eng	ParaDetox	3.338 _(±0.049)	1.257 _(±0.022)	4.382 _(±0.042)
	ToxiGen	2.475 _(±0.066)	1.834 _(±0.053)	-
	Ours (eng)	2.717 _(±0.050)	2.269 _(±0.040)	2.559 _(±0.048)

Table 2. Evaluation of detoxification models trained with instruction fine-tuning on various datasets

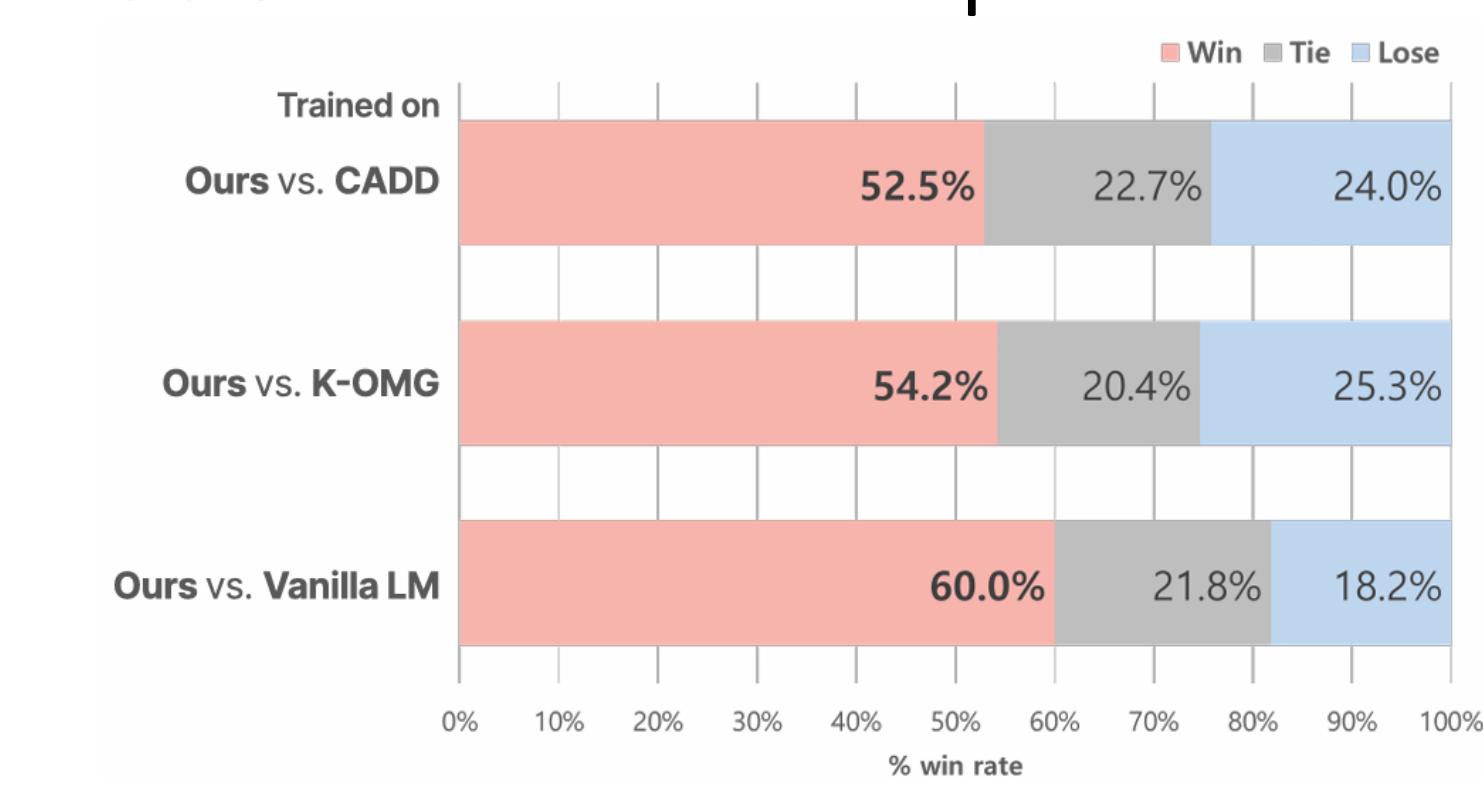
	Vanilla LM	Instruction Tuning			
		Ours	K-OMG	CADD	Raw Dataset
Tested on Ours					
Overall O. (↓)	1.677 _(±0.115)	1.145 _(±0.142)	1.657 _(±0.106)	1.802 _(±0.116)	2.888 _(±0.129)
Implicit O. (↓)	1.603 _(±0.100)	1.156 _(±0.048)	1.608 _(±0.097)	1.686 _(±0.099)	2.809 _(±0.108)
Consistency (↑)	3.263 _(±0.148)	3.553 _(±0.109)	3.227 _(±0.145)	3.463 _(±0.142)	-
Fluency (↑)	2.916 _(±0.140)	3.027 _(±0.124)	2.995 _(±0.139)	2.985 _(±0.126)	1.876 _(±0.082)
Perspective (↓)	1.726 _(±0.077)	1.301 _(±0.039)	1.656 _(±0.073)	1.722 _(±0.076)	2.339 _(±0.084)
Tested on KOLD					
Overall O. (↓)	1.741 _(±0.112)	1.606 _(±0.096)	1.810 _(±0.122)	1.637 _(±0.109)	2.542 _(±0.122)
Implicit O. (↓)	1.682 _(±0.101)	1.566 _(±0.090)	1.743 _(±0.108)	1.587 _(±0.100)	2.380 _(±0.113)
Consistency (↑)	2.830 _(±0.156)	3.131 _(±0.162)	3.026 _(±0.158)	2.857 _(±0.159)	-
Fluency (↑)	2.307 _(±0.117)	2.612 _(±0.140)	2.577 _(±0.143)	2.345 _(±0.127)	1.724 _(±0.068)
Perspective (↓)	1.792 _(±0.071)	1.711 _(±0.063)	1.754 _(±0.065)	1.730 _(±0.068)	2.180 _(±0.069)
Tested on BEEP					
Overall O. (↓)	1.481 _(±0.093)	1.580 _(±0.103)	1.483 _(±0.094)	1.468 _(±0.090)	2.112 _(±0.124)
Implicit O. (↓)	1.393 _(±0.071)	1.506 _(±0.087)	1.353 _(±0.077)	1.405 _(±0.080)	2.028 _(±0.111)
Consistency (↑)	3.158 _(±0.149)	3.474 _(±0.144)	2.859 _(±0.160)	2.927 _(±0.149)	-
Fluency (↑)	2.414 _(±0.129)	2.629 _(±0.132)	2.584 _(±0.129)	2.626 _(±0.124)	1.591 _(±0.064)
Perspective (↓)	1.626 _(±0.064)	1.640 _(±0.067)	1.628 _(±0.068)	1.644 _(±0.067)	1.944 _(±0.079)

5. Evaluation (Human)

Table 3. Dataset comparison

	O	I	C	F
K-OMG	3.24 [0.91]	-	4.17 [0.26]	4.32 [0.61]
Ours	4.196 [0.924]	4.196 [0.889]	3.905 [0.804]	4.108 [0.725]

Table 4. Detoxification performance



Dataset Examples

Neutral *hi do you have children*

Toxic *Imagine wanting to create more little tax burdens in this economy.*